← 返回 Avalaches

冰之所以会滑,是因为其表面覆著一层很薄、近似液体的水膜。科学家大致同意这层膜能提供润滑、让人能在冰场上滑行,但对它为何会形成仍有争论;这个问题已被讨论了约两个世
冰之所以会滑,是因为其表面覆著一层很薄、近似液体的水膜。科学家大致同意这层膜能提供润滑、让人能在冰场上滑行,但对它为何会形成仍有争论;这个问题已被讨论了约两个世纪,如今常以四种竞争性假说来表述。在一般条件下,冰在 0°C(32°F)融化,但某些机制可能在低于该温度时仍让表面呈现可移动性。

在 19 世纪中期,James Thomson 提出「压力融化」:压力会降低熔点;其后 Lord Kelvin 以实验支持了熔点与压力的关系。然而在 1930 年代,Bowden 与 Hughes 计算指出滑雪者施加的压力远不足以显著改变熔点;若要做到,体重得达数千公斤。他们改以「摩擦生热」解释,但反对者指出冰往往在尚未发生滑动前就已很滑。Bonn 的团队建造微观冰场,以「驱动力/阻力」的比值量化滑度,发现滑度与速度无关,因而反对单纯的摩擦融化说。

「预融化」可追溯至 Faraday(1842):冰表面本就存在一层仅数个分子厚的层,且在受重物作用时可变厚。MacDowell 的模拟显示压力、预融化与摩擦可能同时起作用,而摩擦在较低温时更重要。德国 Saarland 团队于 2025 年提出「非晶化」(Phys. Rev. Lett. 135, 066204):滑动会以机械方式破坏晶格秩序,使一层持续增厚的非晶层在不融化的情况下形成,呼应 2011 年钻石模拟研究,也与 Bonn 于 2021 年的滑动实验所指向的「表面结构改变」相符。共识更近了,但用语与机制仍未定论。

Ice is slippery because its surface is coated by a thin, liquidlike water layer. Scientists largely agree the layer lubricates skating, but they still debate why it forms, a question argued for about two centuries and now framed as four competing hypotheses. Under normal conditions ice melts at 0°C (32°F), yet some mechanisms can create surface mobility even below that point.

In the mid-1800s James Thomson proposed pressure melting, later supported experimentally by Lord Kelvin, but in the 1930s Bowden and Hughes calculated that a skier’s pressure is far too small to shift the melting point; it would take thousands of kilograms. They instead argued for frictional heating, though critics note ice can be slippery before motion. Bonn’s lab built a microscopic rink and used the ratio of driving force to resisting force to quantify slipperiness, finding it independent of speed—evidence against simple frictional melting.

Premelting traces back to Faraday (1842): a preexisting layer, only a few molecules thick, that can thicken under load. MacDowell’s simulations suggest pressure, premelting, and friction can all contribute, with friction mattering more at lower temperatures. A 2025 Saarland team proposed “amorphization” (Phys. Rev. Lett. 135, 066204): sliding mechanically disorders the crystal into a growing amorphous layer even without melting, echoing diamond simulations (2011) and aligning with Bonn’s sliding experiments (2021). Agreement is nearer, but terminology and mechanism remain contested.

36fb88182278.png

2025-12-14 (Sunday) · aa973acd0695d6d90f34fb9e6204da3b5635e923