← 返回 Avalaches

在 Monthly Notices of the Royal Astronomical Society 的一项 2026 研究中,Lyla Jung 与同事报告了迄今已识别的最大旋转结构之一:一条嵌入宇宙纤维的星系链,距离地球约 400 million light-years(约 123 megaparsecs)。这一结果置于宇宙网框架之中,在该框架下,纤维、空洞与星系团以非随机方式组织物质,并将气体与暗物质导入星系。这项观测延伸了 Peng Wang 团队在 2021 年提出的早期证据,即某些大尺度纤维可能会旋转。

利用 MeerKAT 射电资料,研究团队在一个狭长的 5.5 million light-year 结构(约 1.69 megaparsecs)中识别出 14 个富含氢的星系;该结构本身又嵌入一条更大的纤维中,后者长约 50 million light-years(约 15.3 megaparsecs),包含超过 280 个星系。他们测得单个星系与整条纤维都存在约 110 kilometers per second 的协调旋转,显示出此前未如此清楚确认的跨尺度同步自旋。后续分析也指出质量吸积仍在进行,许多成员星系呈现富氢特征,因此处于早期成长阶段。

这一发现意义重大,但在技术上相当精细:讯号很微弱,且视线方向上的投影重叠若无谨慎建模会使解读产生偏差,正如 Peng Wang 所指出。若能被重复验证,纤维旋转可成为探测暗物质分布的定量工具,与星系旋转方法互补,并约束宇宙物质中有多少比例位于纤维内。正如 Noam Libeskind 强调的,扩展这一方法可在改进宇宙暗物质含量统计估计的同时,细化星系自旋获取、形成时序与大尺度结构演化的模型。

c39d1a55a215.png



In a 2026 study in Monthly Notices of the Royal Astronomical Society, Lyla Jung and colleagues reported one of the largest rotating structures yet identified: a galaxy chain embedded in a cosmic filament about 400 million light-years from Earth (approximately 123 megaparsecs). The result sits within the cosmic web framework, where filaments, voids, and clusters organize matter non-randomly and channel gas and dark matter into galaxies. This observation extends earlier 2021 evidence from Peng Wang’s team that some large-scale filaments may rotate.

Using MeerKAT radio data, the team identified 14 hydrogen-rich galaxies in a narrow 5.5 million light-year structure (approximately 1.69 megaparsecs), itself embedded in a larger filament about 50 million light-years long (approximately 15.3 megaparsecs) containing more than 280 galaxies. They measured coordinated rotation in both individual galaxies and the full filament at about 110 kilometers per second, indicating synchronous spin across scales not previously confirmed so clearly. Follow-up analysis also suggested ongoing mass accretion, with many member galaxies appearing hydrogen-rich and therefore in early growth phases.

The finding is significant but technically delicate: the signal is faint, and projection overlap along the line of sight can bias interpretation without careful modeling, as Peng Wang noted. If replicated, filament rotation can become a quantitative probe of dark matter distribution, complementing galaxy rotation methods and constraining what fraction of cosmic matter resides in filaments. As Noam Libeskind emphasized, expanding this approach could improve statistical estimates of the universe’s dark matter content while refining models of galaxy spin acquisition, formation timing, and large-scale structure evolution.
2026-02-22 (Sunday) · 10a10d2daf96ca1a13ba77a700e6624aaad7cd15