← 返回 Avalaches

Ramanujan的公式在现代高能物理中的应用已被印度科学研究院CHEP的物理学家发现,这些公式最初于1914年由数学家Ramanujan提出,用以快速计算圆周

Ramanujan的公式在现代高能物理中的应用已被印度科学研究院CHEP的物理学家发现,这些公式最初于1914年由数学家Ramanujan提出,用以快速计算圆周率π。这些公式虽简短却能产生大量正确的π小数位,并成为现代超算计算π的基础。近年科学家利用Chudnovsky算法已将π计算至200万亿位,而该算法实际上源自Ramanujan的工作。

研究团队探讨了为何这些数学公式能够如此有效,并发现它们在对称性尺度不变的共形场论(尤其是对数共形场论)中自然出现。这类理论描述了水在临界点、渗流问题、湍流起始以及某些黑洞描述等现象,这些系统在任何缩放尺度下保持相同的物理行为。Ramanujan公式与对数共形场论的数学结构相符,使研究人员能更高效地计算这些理论中的关键量,进而深入理解湍流与渗流等复杂现象。

该研究显示,Ramanujan百年前的数学公式在现代高能物理计算中具有隐藏但重要的应用,能加速并简化复杂问题的求解。即使不使用这些公式,研究者仍对Ramanujan在20世纪初印度所展现的数学美感与前瞻性结构深感惊叹,因其无意间预示了现代宇宙理解中核心的物理结构。

English: "Ramanujan’s formulas have been found by physicists at the Center for High Energy Physics (CHEP) of the Indian Institute of Science to have applications in modern high‑energy physics. First published by mathematician Srinivasa Ramanujan in 1914, the formulas allow rapid calculation of π and form the foundation for today’s super‑computer algorithms; for instance, the Chudnovsky algorithm used to compute π to 200 trillion digits is based on Ramanujan’s work.

The team investigated why these elegant formulas are so effective and discovered that they naturally arise in scale‑invariant conformal field theories, especially logarithmic conformal field theories. These theories describe phenomena such as water at its critical point, percolation, the onset of turbulence, and certain black‑hole models—systems that look identical at all zoom levels. Because Ramanujan’s formulas match the mathematical structure of these theories, researchers can compute key quantities more efficiently and gain deeper insight into complex processes like turbulence and percolation.

The study shows that Ramanujan’s century‑old formulas provide a hidden but valuable tool for speeding up and simplifying difficult calculations in contemporary high‑energy physics. Even without this application, the scientists were struck by the beauty and prescience of Ramanujan’s mathematics, which inadvertently anticipated structures now central to our understanding of the universe."

2025-12-04 (Thursday) · 354c9532cdb31ab743c2c333102a57ac0eebac6d